高层民用建筑长期沉降预测数值模拟

11.1 案例说明

构筑物能否正常使用,其基础的工后沉降量是最主要的影响因素之一。而 砂土的蠕变行为是一个长期逐渐累积的过程,往往需要几年甚至几十年才能达 到稳定状态。但是,受实验条件的限制,蠕变试验通常是人为终止的,而不是 将试样真正稳定的时刻作为试验的终止时刻,现场监测的方式同样不能对工后沉 降进行预测。然而,数值模拟方法不受时间、空间、设备等因素的束缚,可以 弥补蠕变试验的不足,对砂土蠕变的全过程进行预测分析。因此,本案例通过 对高层民用建筑进行长期沉降预测的数值模拟,同时讲解 Material—Constitutive Model—Burgers Creep 的使用。案例分为两个时间步进行分析,在 Step 1 中, 吹填钙质砂和原始钙质砂采用弹塑性本构的 Dp 准则,便于为后续的蠕变分析 提供一个良好的初始状态。Step 2 进行蠕变分析,即对结构物进行长期沉降预 测的数值模拟。

本案例的整体模型如图 1-1 所示。结构物的基础由吹填珊瑚钙质砂构筑而成。

结构物模型的尺寸为 20 m×20 m×72 m,即长 20m、宽 20m、高 72m。 岩体模型的尺寸为 130 m×130 m×80 m,即长 130m、宽 130m、高 80m。 岩体分为三层,其中,上层为吹填钙质砂,厚度为 6m;中层为原始钙质

砂,厚度为30m;下层是礁灰岩,厚度为44m。结构物与岩体模型如图 1-2、图 1-3 所示。

图 1-3 岩体模型示意图 (单位:米)

加载情况下, Burgers 蠕变模型的表达式为:

$$\varepsilon = \frac{q}{E_0} + \frac{q}{E_1} \left(1 - e^{-\frac{E_1}{\eta_1}t} \right) + \frac{q}{AB} (1 - e^{-Bt})$$

式中, \mathcal{E} 为应变; q为应力; t为时间变量; E_0 为杨氏模量, E_1 为 Kelvin体的弹性模量, n_1 、 n_2 为粘滞系数。

图 1-4 Burgers 蠕变模型示意图

本案例中模型的材料参数设置如下:

材料参数	混凝土	礁灰岩	原始钙质砂	吹填钙质砂
杨氏模量(Pa)	3.3E+10	5.1E+9	4.805E+7	1.293E+7
粘聚力(kPa)	/	/	17.04	10.94
泊松比	0.2	0.18	0.2679	0.3628
屈服应力 (Pa)	/	/	2.1925E+6	4.9953E+5
内摩擦角(。)	/	/	45.71	42.68
渗透系数(m/s)	/	1E-6	3E-5	2E-4
孔隙比	/	0.292	0.6545	0.8828
密度(kg/m ³)	2500	2650	2700	2700

表 1.1 材料参数

Burgers 模型的参数设置如下:

表 1.2 Burgers 蠕变模型参数

材料参数	p/	q/	$E_1/$	η_1	<i>A</i> /	<i>B</i> /
	kPa	kPa	MPa	GPa min	GPa min	Min ⁻¹
吹填钙质砂	100	200	274	624	4.6	0.0343
原始钙质砂	400	500	978	4080	54.5	0.0128

11.2 网格划分

11.2.1 借助 Abaqus 软件建立模型及划分网格

本软件计算所需要的网格需要借助专业网格划分软件 Gid、Abaqus 等软件 完成。本案例借助 Abaqus 软件建立模型并划分网格,网格划分完成后的模型如 图 1-5 所示。

图 1-5 利用 Abaqus 软件网格划分后的模型

11.2.2 导出 Abaqus 网格(*.inp) 文件和背景线(*.igs) 文件

点击 Module—Job—Create Job(重命名)—Continue—OK—Job Manager—W rite input 即完成网格(*.inp)文件的导出,如图 1-6 所示。*.inp 文件保存在 A baqus 的工作路径下,如果用户不对保存路径进行修改,导出的网格(*.inp) 文件默认保存在 Abaqus 安装盘的 File_of_software—Abaqus—Temp 文件夹中。

♣ Create Job × Name: userdefined Source: Model	Edit Job Name: userdefined Model: Model-1 Analysis product: Unknown Description: Submission General Memory Parallelization Precision Job Type	×					
Model-1	Full analysis Recover (Explicit) Restart	¢	Job Manager	Model	Туре	Status	× Write Input
	Run Mode Background O Queue: Type: Submit Time Immediately Wait: At: Vait: Va	use	erdefined	Model-1	Full Analysis	None	Data Check Submit Continue Monitor Results
Continue Cancel	OK	c	Create	Edit Copy	Rename	Delete	Dismiss

图 1-6 用 Abaqus 导出网格文件的步骤示意图

11.3 FssiCAS 图形界面操作——前处理

11.3.1 导入网格和背景线

点击 FssiCAS—Preprocess—Load Mesh,在弹出的文件选择对话框中选择 Abaqus 输出的*.inp 网格文件,双击或点击打开按钮,如图 1-7 所示。

Model	Results	😽 Choose Abaqus	.inp File.				
PreProcess LoadMesh Gid Abaqus		$\leftarrow \rightarrow \star \uparrow$	〉此日	l脑 〉 桌面 〉 fssi 〉 Mesh1208 〉 121	3NewModel		
IDF	ound oundary nics	组织 ▼ 新建3	x件夹 ★ ^	名称 ^	修改日期	类型	大小
- 💸 No Coup - 💸 Stokes W - 🔁 CFD	iled /ave	 ↓ 下载 ¹ 文档 	*	BottomAndFloorX24.inp	2021/12/13 17:30	INP 文件	48,709 KB
🖻 🤼 Material		■ 图片	*	LessBottomAndUper.inp	2021/12/13 17:31	INP 文件	3,925 KB
E G Time Step		🤜 此电脑 📜 burgurs	*	Shell1.inp	2021/12/13 19:00 2021/12/13 19:20	INP 文件 INP 文件	3,426 KB 1,406 KB
Sub_Step ⊡≣⊙ Time Histor ∽ Initial State	1 y	📕 Debug	*	ShellFloor3Bottom.inp ShellFloorBottom.inp	2021/12/14 16:54 2021/12/13 19:50	INP 文件 INP 文件	27,085 KB 39,713 KB
Computatio FSSI-W	n	Debug	*	ShellFloorBottom1215.inp	2021/12/15 18:27	INP文件	17,148 KB
- 🔻 FSSI-NW		📙 Multiple	** 1 / 2				

图 1-7 导入 Abaqus 网格的步骤示意图

在弹出对话框中设置流体节点阶次如图 1-8 所示。本案例中固体节点采用 四边形四节点单元。不设置流体节点,因此,界面中流体节点阶次设置为 0, 点击 Ok 按钮确认选择。

🐒 Load Mesh					?	×
	S. Node	Ele. Type			F. Order	
construction	8	Solid Element	V	0		
bottommiddel	8	Solid Element		0		
bottomup	8	Solid Element		0		
bottomdown	8	Solid Element		0		
shell	4	DKQ Shell		0		
				\ <u></u>		

图 1-8 设置流体节点阶次界面

注: S.Node 代表固体节点为 8 节点的类型, Solid Element 为实体单元, DKQ

11.3.2 添加边界条件

本案例分析前需要设置边界条件,在岩体试件的四个侧面设置 x 与 y 方向的约束,控制试件在两个方向的平动自由度,即 X=Y=0。在底面上的(z=0 m)节点设置 x、y 与 z 方向的约束,控制试件在三个方向的平动自由度,即 X=Y=Z=0。

依次点击工具栏中图标 ☑ 和 Ⅲ ,进入单元选取模式。点击键盘'R' 键,开始进入单元选择模式。按住鼠标左键,拖动鼠标框选岩体的 X 与 Y 方向 侧面的所有单元,被选择的单元会变亮,右击鼠标后设置约束,具体操作如图 1-9 所示。然后,按住鼠标左键,拖动鼠标框选岩体底面所有的单元设置约 束。具体操作如图 1-10 所示。

FissiCAS File UserDefined Support	🖡 🏹 50 🎨 BP BP BP BP 🖶 🚺	Step 1 🛛 🖗 🎭 🌆 🍓 🏾 🌉 🦉 CPUs 3 Allocated Memory Size(MB): 10 Project: 4/Desktop/fssi/002ConstructionOnBase/ 🔻	o ×
Model Results Prefrocess Image: Second Sec	Soil-Structures Pear Mode® Fss: Fss: Fss: MNEN	<pre>roces</pre>	
Enter Command Here		Elements: 124919 Nodes: 151717 5-Nodes: 151717 F-Nodes: 0 Element No.: Node No.: Material : All S - F Type : Solid Boundary : 0 Select Ty	ype : Element

图 1-9 选择岩体 X 与 Y 方向上的侧面单元添加边界条件示意图

FisiCAS -	- 0	×
File UserDefined Support		
🕐 语 🗒 🖵 🗊 🗰 🇱 🗰 🗱 🕼 😵 🍄 🍄 🍄 🍄 🏶 📲 Step 1 🔹 🤋 🌚 🏘 🏶 🦛 🚎 🌉 CPUS 3 Allocated Memory Size(MB): 10 Project: 🖓 Desktop/fssi/002ConstructionOnBase/ 💌		
Model Results Soll-Structures PostProcess		
First Condition Image: Solution Image: Solution	Celete	
	-	_

图 1-10 选择岩体底面上的单元添加边界条件示意图

注: 1.在右侧快捷窗口中点击 Show Boundary Condition,可以检查是否正确添加边界条件。

2.边界条件添加时第二次设置会覆盖第一次设置,如重复添加边界条件, 一定要保证第二次的边界条件为最终边界条件,或者单独对重复节点进行 多种不同的边界条件的设置。

11.3.3 水动力边界条件设置

由于本案例不考虑流体节点,因此不需要设置水动力边界条件,并且设置 耦合方式为非耦合,点击 FssiCAS—Preprocess—Hydrodynamics—No Coupled— Yes。如图 1-11 所示。

图 1-11 流固耦合方式设置界面

本案例设置了 Step 1、Step 2 两个时间步。Step 1 中岩体的吹填钙质砂与原 始钙质砂采用 Mohr Coulomb 本构中 Drucker Prager 屈服准则进行弹塑性分析, 用于给后续计算提供一个良好的初始状态。Step 2 中岩体的吹填钙质砂与原始 钙质砂为 Burgers 蠕变分析,在不同次序的 Step 中,计算总时间与时间步长间 隔等参数有所不同。具体参数参照 11.3.7 节内容。

点击^{●●●}按键可增加时间步,添加成功后左端任务栏会显示添加的时间步, 点击 Step 1 按键可以对需要设置的时间步进行设置,如图 1-12 所 示。

图 1-12 增加时间步的步骤示意图

如果先设置 Step 1 的边界条件和前处理的各项参数再添加新的时间步,新的时间步会自动复制 Step 1 的所有设置,如果先添加新的时间步再设置 Step 1,每个时间步都需要重新设置对应的边界条件和参数。为了提高操作效率,一般情况下先将 Step 1 的所有参数都设置完整再创建新的时间步。

11.3.5 设置重力加速度场

点击 FssiCAS—Preprocess—Load—Filed Quantity—Uniform Field,为整 个案例施加重力载荷。即加速度场的 X 方向为 0 m/s², Y 方向为 -9.806 m/s²,如图所示。Step 2 的重力场在新建时间步时后自动复制当前时间步的 设置,因此后续时间步不再重复施加加速度场。

🔢 Field Quantity		×
Acceleration (m	1/s²)	٦
X:	0]
Y:	0]
Z:	-9.806]
	OK Cancel	

11.3.6 设置材料参数

本案例 Step 1 与 Step 2 的相关参数设置如下:

点击 FssiCAS—Preprocess—Material—Material 1,材料名称用户可以自行 更改,在弹出对话框中输入材料参数。

其中, Step 1 中岩体的吹填钙质砂与原始钙质砂采用 Mohr Coulomb 本构中

Drucker Prager 屈服准则进行弹塑性分析; 礁灰岩与混凝土采用弹性本构进行分析; 结构物中的楼板是壳单元, 需要采用壳单元弹性本构(Elastic_Shell)进行分析。Step 1 材料参数设置如表 1.3 所示, 材料参数设置示意图如图 1-13 所示。

Step 2 中吹填钙质砂与原始钙质砂均采用 Burgers 蠕变模型进行分析,其它 材料仍延用 Step 1 中的设置。Step 2 中材料参数设置如表 1.4 所示,材料参数设 置示意图如图 1-14 所示。

_					
	材料参数	混凝土	礁灰岩	原始钙质砂	吹填钙质砂
	杨氏模量(Pa)	3.3E+10	5.1E+9	4.805E+7	1.293E+7
	粘聚力(kPa)	/	/	17.04	10.94
	泊松比	0.2	0.18	0.2679	0.3628
	屈服应力 (Pa)	/	/	2.1925E+6	4.9953E+5
	内摩擦角(°)	/	/	45.71	42.68
	渗透系数(m/s)	/	1E-6	3E-5	2E-4
	孔隙比	/	0.292	0.6545	0.8828
	密度(kg/m ³)	2500	2650	2700	2700
_					

表 1.3 Step 1 材料参数设置

表 1.4 Step 2 中材料参数设置

材料参数	混凝土	礁灰岩	原始钙质	吹填钙质砂
杨氏模量(Pa)	3.3E+10	5.1E+9	4.805E+7	1.293E+7
泊松比	0.2	0.18	0.2679	0.3628
开尔文体弹性模量 E_1 (Pa)	/	/	978E+6	274E+6
粘滞系数 η1/ (Pa.min)	/	/	4080E+9	624E+9
广义粘壶 A/(Pa·min)	/	/	54.5E+9	4.6E+9
广义粘壶 B/min ⁻¹	/	/	0.0128	0.0343
渗透系数(m/s)	/	1E-6	3E-5	2E-4
孔隙比	/	0.292	0.6545	0.8828
密度(kg/m ³)	2500	2650	2700	2700

Interial Name		吹填钙质砂	^	Material Name		原始钙质砂	
onstitutive Model:		Mohr Coulomb	*	Constitutive Model:		Mohr Coulomb	
accept		No Survey	T	Succeed		No Succeed	
attial Streer Tenrile		Ver		Initial Stress Tensile		Yes	
Constitutive Model Par		103		-Constitutive Model Para	ameters:	·	
Young's Modulus (Pa):	1.293e7			Young's Modulus (Pa):	4.805e7		
Poisson's Ratio:	0.3628			Poisson's Ratio:	0.2679		
Uniaxial Yield Stress (Pa):	4.9953#5			Uniaxial Yield Stress (Pa):	2.1925e6		
Work Hardening Modulus	0			Work Hardening Modulus:	0		
Frictional Apples	42.68			Frictional Angle:	45.71		
Viald Criterian		Develop Deseas		Yield Criterion:		Drucker Prager	
Young's Modulus (Pa): 0 Poisson's Ratio: 0 Damping Coefficient: 0			=1	Poisson's Ratio: 0 Damping Coefficient: 0			
Material Parameters: Solid Particle Bulk Modulu	s (Pa): 1.0E+20			Material Parameters: Solid Particle Bulk Modulus	s (Pa): 1.0E+20		
Granular Density (kg/m ²):	2700			Granular Density (kg/m ²):	2700		
Void Ratio:	0			Void Ratio:	0		
Parameters under the B	Experimental En	vironment:		Parameters under the E	xperimental Envi	ronment:	
Gravity (m/s ²):	9.805			Gravity (m/s ²):	9.806		

Interial Name		雄灰岩	
constitutive Model:		Elastic	V
ucceed		No Succeed	V
nitial Stress Tensile		Yes	V
Constitutive Model Par	ameters:		
Young's Modulus (Pa): 5.1	e9		
Poisson's Ratio : 0.1	8		
Dampmod Model: Young's Modulus (Pa): 0 Poisson's Ratio: 0 Damping Coefficient: 0		ELASTIC	•
Material Parameters:			
Solid Particle Bulk Modulu	is (Pa): 1.0E+20		
Granular Density (kg/m ³):	2650		
Void Ratio:	0		
	vnerimental Fr	ironment:	
Parameters under the E	Aper Intential Li		

faterial Name			滉凝土柱子		
onstitutive Model:				Elastic	Y
ucceed				No Succeed	v
nitial Stress Tensile				Yes	v
Constitutive Model	Paramete	rs:			
Young's Modulus (Pa):	3.3e10				
Poisson's Ratio :	0.2				
Dampmod Model F	arameters	c			
Dampmod Model:				ELASTIC	W
Young's Modulus (Pa	: 0				
Poisson's Ratio:	0				
Damping Coefficien	: 0				
Material Parameter	rs:				
Solid Particle Bulk Mo	dulus (Pa):	1.0E+20			
Granular Density (kg/r	n*):	2500			
Void Ratio:		0			
Parameters under t	he Experi	mental En	wironment:		
Gravity (m/s ^a):		9.806			

laterial Name	shell		
Constitutive Model:		Elastic_Shell	T
ucceed		No Succeed	v
nitial Stress Tensile		Yes	V
-Constitutive Model Paramet	ers:		
Young's Modulus (Pa): 3.3e10			
Poisson's Ratio : 0.2			
Thickness: 0.1			
Dampmod Model Parameter	s		
Dampmod Model:		ELASTIC	Ŧ
Young's Modulus (Pa): 0			
Poisson's Ratio: 0			
Poisson's Ratio: 0 Damping Coefficient: 0			
Poisson's Ratio: 0 Damping Coefficient: 0			
Poisson's Ratio: 0 Damping Coefficient: 0 Material Parameters:			
Poisson's Ratio: 0 Damping Coefficient: 0 Material Parameters: Solid Particle Bulk Modulus (Pa)			
Poisson's Ratio: 0 Damping Coefficient: 0 Material Parameters: Solid Particle Bulk Modulus (Pa) Granular Density (kg/m³):	1.0E+20 2500]	
Poisson's Ratio: 0 Damping Coefficient: 0 Material Parameters: Solid Particle Bulk Modulus (Pa) Granular Density (kg/m ³): Void Ratio:	1.0E+20 2500 0		
Poisson's Ratio: 0 Damping Coefficient: 0 Material Parameters: Solid Particle Bulk Modulus (Pa) Granular Density (kg/m ³): Void Ratio: Parameters under the Exper	1.0E+20 2500 0 imental Environmen		
Poisson's Ratio: 0 Damping Coefficient: 0 Material Parameters: Solid Particle Bulk Modulus (Pa) Granular Density (kg/m ³): Void Ratio: Parameters under the Exper	1.0E+20 2500 0 imental Environmen		

图 1-13 Step 1 中材料参数设置界面

Material 3		• ×	Føj Material 2		
Material Name	吹墙钙质砂	^	Material Name	原始钙质砂	
Constitutive Model:	Burgers	V	Constitutive Model:	Burgers	v
Succeed	No Succeed	V	Succeed	No Succeed	V
Initial Stress Tensile	Yes	V	Initial Stress Tensile	Yes	
Constitutive Model Parameters:			Constitutive Model Parameters:		
Type:	Burgers		Type:	Burgers	V
Young's Modulus (Pa):	1.293e7		Young's Modulus (Pa):	4.805e7	
Poisson's Ratio:	0.3628		Poisson's Ratio:	0.2679	
Kelvin Body Young's Modulus (Pa):	274e6		Kelvin Body Young's Modulus (Pa):	978e6	
Kelvin Body ŋ:	624e9		Kelvin Body ŋ1:	4080e9	
Generalized Nonlinear Dashpot B:	0.0343		Generalized Nonlinear Dashpot B:	0.0128	
Generalized Nonlinear Dashpot A:	4.6e9		Generalized Nonlinear Dashpot A:	54.5e9	
Constitutive Equation	$\varepsilon = \frac{1}{E_0} + \frac{1}{E_1} (1 - e^{-\eta_1}) + \frac{1}{AB} (1 - e^{-D_1})$		Constitutive Equation	$\varepsilon = \frac{1}{E_0} + \frac{1}{E_1} (1 - e^{-\eta_\perp}) + \frac{1}{AB} (1 - e^{-\eta_\perp})$)
Dampmod Model Parameters:			Dampmod Model Parameters:		
Dampmod Model:	ELASTIC	W	Dampmod Model:	ELASTIC	W
Young's Modulus (Pa): 0			Young's Modulus (Pa): 0		
Poisson's Ratio: 0			Poisson's Ratio: 0		
Damping Coefficient: 0			Damping Coefficient: 0		
Material Parameters:		5	Material Parameters:		
Solid Particle Bulk Modulus (Pa): 1.0E+20			Solid Particle Bulk Modulus (Pa): 1.0E+20	0	
Granular Density (kg/m³): 2700			Granular Density (kg/m ³): 2700		
Void Ratio: 0			Void Ratio: 0		
Parameters under the Experimental En	vironment:		Parameters under the Experimental	Environment:	
Gravity (m/s ²): 9.806			Gravity (m/s ²): 9.806		
		ок			ОК

图 1-14 Step 2 中部分材料参数设置界面示意图

11.3.7 设置求解器类型

点击 FssiCAS—Preprocess—Solver—Solver Type,在弹出对话框中设置求解器类型,如图 1-15 所示。

Solver Setup					
S	Golver Consolida	ation 🔻 Drained	▼		
1	Parameters				
	Earthquake	No Earthquake			
	Rotation	Non-Rotation			
	Stiffness Matrix Symmetry	No			
	Iterative Convergence Criteria	0.01			
	Maximum Subdivision Number	100			
	Property Updation	Non-Updated			
	Analysis Type	3D			
	Restart File Written	Yes	▼		
	Deformation to 0 in Restart File	Yes			
	Displacement Succeed	Yes	▼		
	NBFGS	1	▼		
	Sparse Solver Type	Direct Sparse Solver (LU)			
	Parallel Method	CPU OpenMP			
	CPU Parallel Threads	6			
l		Ok			

图 1-15 求解器类型及相关参数设置界面

11.3.8 设置时间步

点击 FssiCAS—Preprocess—Solver—Time Step。设置相关参数 Step 1、Step

2 的相关参数设置如下:

Parameter	Step 1		Ste	ep 2	
Sub_Step		Step 1	Step 2	Step 3	Step 4
Simulation Time (s)	3	200	400	1000	1400
Interval for Time Steps (s)	0.5	2	4	10	20
Updation for Coordinate Time	9999	9999	9999	9999	9999
Updation for Global Stiffness	9999	9999	9999	9999	9999
Maximum lterations	10	10	10	10	10
Restart File Step (s)	9999	9999	9999	9999	9999
Output Time Step (s)	0.5	2	4	10	20
Results Output Type	On Nodes	On Nodes	On Nodes	On Nodes	On Nodes
Result Format	Binary	Binary	Binary	Binary	Binary
History Plot Interval (s)	0.5	2	4	10	20

表 1.5 时间步参数设置

注: Simulation Time (s)为计算总时间; Interval for Time Steps (s)为时间步 长; Updation for Coordinate Time (s)为坐标更新时间; Updation for Global Stiffness Matrix (s)为刚度矩阵更新时间; Maximum Iterations 为每个时间步最大 迭代次数; Restart File Step (s)为输出重启文件的时间; Output Time Step (s)为输 出某一时刻所有节点/高斯点上的位移、应力、应变等结果文件的时间间隔; Results Output Type 为选择输出节点上的结果; Result Format 为选择结果保存 格式; History Plot Interval (s)为输出特定的节点或单元上的应力、应变等结果文 件的时间间隔。α, β1, β2 为时间系数, 保持默认值即可。参数中更新坐标 时间、更新刚度矩阵时间、生成重启文件时间的设置时间大于总时间时,表示 不启用该项功能。

State	tep	?	\times
Step	1		^
-Parame	ter		
Simulatio	on Time (s)	3	_
Interval f	or Time Steps (s)	0.5	
Updation	for Coordinate Time (s)	10000	
Updation	for Global Stiffness Matrix (s)	10000	
Maximun	n Iterations	10	
Restart Fi	ile Step (s)	10000	
Output T	ime Step (s)	0.5	
Results O	utput	On Nodes	
Results S	equence	Manage	
Results Fe	ormat	Binary	
History P	lot Interval (s)	0.5	
α		0.6	
β1		0.605	
β2		0.6	v
<		>	

图 1-16 Step 1 时间步相关参数设置界面

Fssi Time Step	?	×	Si Time Step	? ×
Step 1		^	Step 2	
Parameter		-	Parameter	
Simulation Time (s)	3		Simulation Time (s)	200
Interval for Time Steps (s)	0.5		Interval for Time Steps (s)	2
Updation for Coordinate Time (s)	10000		Updation for Coordinate Time (s)	10000
Updation for Global Stiffness Matrix (s)	10000	_	Updation for Global Stiffness Matrix (s)	10000
Maximum Iterations	10	_	Maximum Iterations	10
Restart File Step (s)	10000		Restart File Step (s)	10000
Output Time Step (s)	0.5		Output Time Step (s)	2
Results Output	On Nodes	•	Results Output	On Nodes 1
Results Sequence	Manage		Results Sequence	Manage
Results Format	Binary	•	Results Format	Binary
History Plot Interval (s)	0.5		History Plot Interval (s)	2
α	0.6		α	0.6
β1	0.605		β1	0.605
β2	0.6	~	β2	0.6
<	>		<	>

s Time Step	?	\times	Fssi Time	Step	?	
Step 3		^	Step	4		
Parameter		_	-Paran	neter		
Simulation Time (s)	400		Simula	tion Time (s)	1000	
Interval for Time Steps (s)	4		Interva	I for Time Steps (s)	10	
Updation for Coordinate Time (s)	10000		Updati	on for Coordinate Time (s)	10000	_
Updation for Global Stiffness Matrix (s)	10000		Updati	on for Global Stiffness Matrix (s)	10000	_
Maximum Iterations	10		Maxim	um Iterations	10	_
Restart File Step (s)	10000		Restart	File Step (s)	10000	_
Output Time Step (s)	4		Output	Time Step (s)	10	_
Results Output	On Nodes	•	Results	Output	On Nodes	
Results Sequence	Manage		Results	Sequence	Manage	
Results Format	Binary	•	Results	Format	Binary	
History Plot Interval (s)	4		History	Plot Interval (s)	10	_
α	0.6		α		0.6	
β1	0.605		β1		0.605	
β2	0.6	~	β2		0.6	
< Comparison of the second sec	>		<			>

图 1-17 Step 2 时间步中子时间步的相关参数设置界面

11.3.9 设置初始条件

点击 FssiCAS—Preprocess—Initial State,设置初始条件,点击 ok,完成初 始状态设置,如图 1-17 所示。

si Initial S	State	×				
Solver: Consolidation						
Start Time	e set to Zero					
	Yes					
Gravity						
9.81						
Restart File	e Path (Dynfin)					
		Load File				
		Ok				

图 1-18 初始条件设置界面

11.3.10 计算

点击 FssiCAS—Preprocess—Computation—FSSI-W,保存当前项目,开始 计算。

11.4 FssiCAS 图形界面操作——后处理

11.4.1 加载文件

点击 FssiCAS—Postprocess—Open Results File,选择需要处理的结果文件 夹,如图 1-19 所示。

图 1-19 加载数值计算结果文件步骤图

点击 FssiCAS—Postprocess—Distribution Plot—Solid—Displacement,在界面上方工具栏选择 Displacement Z,输入想要查看的时间步点击回车,如图 1-20 所示。

图 1-20 在 0.2 与 2011.4 时间步下 Z 方向的位移分布图

本案例计算结果分布图可以由伸缩栏 Export Results Figure 按键导出,如图 1-21 所示。

图 1-21 图像输出按键示意图

本案例结果分布图如图 1-22 所示。

图 1-22 计算结果分布图

Dynamic 状态下的查看的结果等于当前时间步的计算结果减去第一个输出 文件的计算结果; Full 状态下的结果分布就是当前时间步的计算结果。因此, 去掉弹塑性的竖向位移后的位移图如图 1-23。即蠕变约 2000min 后的竖向位 移图。

图 1-23 Dynamic 状态下竖向位移结果分布图

后处理部分不仅可以输出模型的位移、应力、应变结果分布图,也可以输出模型上节点或单元的时程曲线。首先点击 History Plot—Soil History—History Plot on Node/Element,选择需要输出时程曲线的节点或单元,勾选节点 No.*, 双击 Plot Type 中所列选项可以查看节点的时程曲线,具体操作步骤如图 1-24 所示。

图 1-24 选择节点操作步骤示意图

根据时程曲线,我们可以查看模型上某一节点在经过 2000min 后的竖向位 移变化过程,如图 1-25 所示。

图 1-25 某节点的位移变化图